Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37790362

RESUMO

Touch information is central to sensorimotor integration, yet little is known about how cortical touch and movement representations interact. Touch- and movement-related activity is present in both somatosensory and motor cortices, making both candidate sites for touch-motor interactions. We studied touch-motor interactions in layer 2/3 of the primary vibrissal somatosensory and motor cortices of behaving mice. Volumetric two-photon calcium imaging revealed robust responses to whisker touch, whisking, and licking in both areas. Touch activity was dominated by a sparse population of broadly tuned neurons responsive to multiple whiskers that exhibited longitudinal stability and disproportionately influenced interareal communication. Movement representations were similarly dominated by sparse, stable, reciprocally projecting populations. In both areas, many broadly tuned touch cells also produced robust licking or whisking responses. These touch-licking and touch-whisking neurons showed distinct dynamics suggestive of specific roles in shaping movement. Cortical touch-motor interactions are thus mediated by specialized populations of highly responsive, broadly tuned neurons.

2.
Nat Commun ; 14(1): 3860, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37385989

RESUMO

Sensory cortical representations can be highly dynamic, raising the question of how representational stability impacts learning. We train mice to discriminate the number of photostimulation pulses delivered to opsin-expressing pyramidal neurons in layer 2/3 of primary vibrissal somatosensory cortex. We simultaneously track evoked neural activity across learning using volumetric two-photon calcium imaging. In well-trained animals, trial-to-trial fluctuations in the amount of photostimulus-evoked activity predicted animal choice. Population activity levels declined rapidly across training, with the most active neurons showing the largest declines in responsiveness. Mice learned at varied rates, with some failing to learn the task in the time provided. The photoresponsive population showed greater instability both within and across behavioral sessions among animals that failed to learn. Animals that failed to learn also exhibited a faster deterioration in stimulus decoding. Thus, greater stability in the stimulus response is associated with learning in a sensory cortical microstimulation task.


Assuntos
Aprendizagem , Órgãos dos Sentidos , Animais , Camundongos , Cálcio , Neurônios , Opsinas
3.
Curr Biol ; 33(9): 1765-1777.e5, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37130521

RESUMO

Cortical activity patterns occupy a small subset of possible network states. If this is due to intrinsic network properties, microstimulation of sensory cortex should evoke activity patterns resembling those observed during natural sensory input. Here, we use optical microstimulation of virally transfected layer 2/3 pyramidal neurons in the mouse primary vibrissal somatosensory cortex to compare artificially evoked activity with natural activity evoked by whisker touch and movement ("whisking"). We find that photostimulation engages touch- but not whisking-responsive neurons more than expected by chance. Neurons that respond to photostimulation and touch or to touch alone exhibit higher spontaneous pairwise correlations than purely photoresponsive neurons. Exposure to several days of simultaneous touch and optogenetic stimulation raises both overlap and spontaneous activity correlations among touch and photoresponsive neurons. We thus find that cortical microstimulation engages existing cortical representations and that repeated co-presentation of natural and artificial stimulation enhances this effect.


Assuntos
Córtex Somatossensorial , Percepção do Tato , Camundongos , Animais , Córtex Somatossensorial/fisiologia , Lobo Parietal , Movimento/fisiologia , Tato , Vibrissas/fisiologia
4.
eNeuro ; 9(6)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36316120

RESUMO

Primary sensory cortices display functional topography, suggesting that even small cortical volumes may underpin perception of specific stimuli. Traditional loss-of-function approaches have a relatively large radius of effect (>1 mm), and few studies track recovery following loss-of-function perturbations. Consequently, the behavioral necessity of smaller cortical volumes remains unclear. In the mouse primary vibrissal somatosensory cortex (vS1), "barrels" with a radius of ∼150 µm receive input predominantly from a single whisker, partitioning vS1 into a topographic map of well defined columns. Here, we train animals implanted with a cranial window over vS1 to perform single-whisker perceptual tasks. We then use high-power laser exposure centered on the barrel representing the spared whisker to produce lesions with a typical volume of one to two barrels. These columnar-scale lesions impair performance in an object location discrimination task for multiple days without disrupting vibrissal kinematics. Animals with degraded location discrimination performance can immediately perform a whisker touch detection task with high accuracy. Animals trained de novo on both simple and complex whisker touch detection tasks showed no permanent behavioral deficits following columnar-scale lesions. Thus, columnar-scale lesions permanently degrade performance in object location discrimination tasks.


Assuntos
Córtex Somatossensorial , Percepção do Tato , Camundongos , Animais , Vibrissas , Tato , Córtex Cerebral
5.
Nat Commun ; 13(1): 5484, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123376

RESUMO

Sensory input arrives from thalamus in cortical layer (L) 4, which outputs predominantly to superficial layers. L4 to L2 thus constitutes one of the earliest cortical feedforward networks. Despite extensive study, the transformation performed by this network remains poorly understood. We use two-photon calcium imaging to record neural activity in L2-4 of primary vibrissal somatosensory cortex (vS1) as mice perform an object localization task with two whiskers. Touch responses sparsen and become more reliable from L4 to L2, with nearly half of the superficial touch response confined to ~1 % of excitatory neurons. These highly responsive neurons have broad receptive fields and can more accurately decode stimulus features. They participate disproportionately in ensembles, small subnetworks with elevated pairwise correlations. Thus, from L4 to L2, cortex transitions from distributed probabilistic coding to sparse and robust ensemble-based coding, resulting in more efficient and accurate representations.


Assuntos
Córtex Somatossensorial , Percepção do Tato , Animais , Cálcio , Camundongos , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Vibrissas/fisiologia
6.
Front Surg ; 8: 693607, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34386516

RESUMO

Purpose: The decision for open reduction and internal fixation (ORIF) of orbital fractures is usually based on clinical severity and soft tissue and bony findings. This study aimed to identify prognostic factors for a successful surgical outcome. Materials and Methods: We included all orbital fractures treated by ORIF referred to the Ophthalmology clinic for assessment over a 12-year period. A successful outcome was defined as (i) a single operation, (ii) improved diplopia and globe position at 6 months, (iii) no surgical complications, and (iv) patient satisfaction. Data was collected on presenting symptoms, orthoptic measurements, time interval from injury to surgery, fracture geometry and involvement of internal, and external bony landmarks. Univariate and multivariate regression was used to identify predictive factors for success. Results: There were 143 cases with median age 35.4 years and 81.8% (117/143) male. 51% (73/143) were complex fractures involving multiple orbital walls. 63.6% (91/143) achieved significant improvement in both enophthalmos and diplopia at 6 months. 15.3% (22/143) had significant preoperative soft tissue or neurogenic injury. 11.8% (17/143) required orbital plate repositioning or removal. 1.4% (2/143) developed orbital haematoma and 4.2% (6/143) had cicatricial entropion. Pre-operative nerve or muscle damage (OR 0.05, p = 0.01) and infraorbital fissure fracture (OR 0.38, p = 0.04) were associated with poor outcomes, whereas an intact posterior ledge was associated with successful outcomes (OR 3.03, p = 0.02). Conclusion: Careful ocular motility evaluation to ascertain neurogenic injury and muscle compartment syndrome, and radiological analysis of the integrity of the posterior ledge and the inferior orbital fissure can facilitate management and expectations of ORIF surgery.

7.
Nature ; 579(7798): 256-259, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32132709

RESUMO

Most cortical synapses are local and excitatory. Local recurrent circuits could implement amplification, allowing pattern completion and other computations1-4. Cortical circuits contain subnetworks that consist of neurons with similar receptive fields and increased connectivity relative to the network average5,6. Cortical neurons that encode different types of information are spatially intermingled and distributed over large brain volumes5-7, and this complexity has hindered attempts to probe the function of these subnetworks by perturbing them individually8. Here we use computational modelling, optical recordings and manipulations to probe the function of recurrent coupling in layer 2/3 of the mouse vibrissal somatosensory cortex during active tactile discrimination. A neural circuit model of layer 2/3 revealed that recurrent excitation enhances sensory signals by amplification, but only for subnetworks with increased connectivity. Model networks with high amplification were sensitive to damage: loss of a few members of the subnetwork degraded stimulus encoding. We tested this prediction by mapping neuronal selectivity7 and photoablating9,10 neurons with specific selectivity. Ablation of a small proportion of layer 2/3 neurons (10-20, less than 5% of the total) representing touch markedly reduced responses in the spared touch representation, but not in other representations. Ablations most strongly affected neurons with stimulus responses that were similar to those of the ablated population, which is also consistent with network models. Recurrence among cortical neurons with similar selectivity therefore drives input-specific amplification during behaviour.


Assuntos
Modelos Neurológicos , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Simulação por Computador , Camundongos , Tato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...